
© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 1

GST Site Foundation v1.0.3

Prepared by

FatWire Global Solutions Team

2 GST SITE FOUNDATION V1.0.3

All content included in this document, including, but not limited to, text, design,
graphics, logos, interfaces, data compilations, software, and code, is the property of
FatWire Corporation ("FatWire") and is protected by United States and
international copyright laws.

This document is provided on an “as is” and “as available” basis. FatWire makes no

representations or warranties of any kind, express or implied regarding this

document or the information, content, materials, or products included in the

document or as to the operation of the software to which this document refers. You

expressly agree that your use of this document is at your sole risk.

To the fullest extent permissible by applicable law, FatWire disclaims all warranties,

express or implied, including, but not limited to, implied warranties of

merchantability and fitness for a particular purpose. FatWire will not be liable for

any damages of any kind arising from the use of this document, including, but not

limited to, direct, indirect, incidental, punitive, and consequential damages.

Certain state laws do not allow limitations on implied warranties or the exclusion or

limitation of certain damages. If these laws apply to you, some or all of the above

disclaimers, exclusions, or limitations may not apply to you, and you might have

additional rights.

Copyright © 2010 FatWire Corporation. All rights reserved.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 3

Table of Contents

Document Revision History .. 4

Executive Summary .. 5

For More Information ... 6

Glossary .. 7

Summary of Design Principles .. 8
Overview .. 8
Simplicity ... 8
Extensibility .. 8
Separation of concerns ... 8
Use of naming conventions ... 9
Minimalism .. 9

Pre-requisites Checklist .. 10

Design Details ... 11
Controller use .. 11
Site Plan Structure ... 12
URL Specification ... 14
URL Assembly ... 16
GST Flex Family .. 20
GSTVirtualWebroot Assets .. 21
GSTAlias Assets .. 23
Web-Referenceable Assets & Pages ... 25
Index Pages .. 30
Landing Pages ... 31
Wireframes ... 32

Future Direction .. 33
Page Asset UI Customization .. 33
Tools .. 33
Postupdate action on asset delete to create an alias ... 33
Make use of IBlobRef for a pretty BlobServer URL .. 33
301 support for GSTAlias assets .. 34
AddLink customization preventing linking to non-WRAssets .. 34

4 GST SITE FOUNDATION V1.0.3

Document Revision History

Date Revision Author Notes
June 11, 2010 1.0 Tony Field

Michael Sullivan
Dolf Dijkstra

Initial version

October 4, 2010 1.0.2 Tony Field Internal Release
November 5, 2010 1.0.3 Tony Field

Michael Sullivan
Suzanne Bourdeaux

Target attribute of GSTAlias change
to untyped single-valued named
association

Corrected WRA definition to
replace linktitle with linktext

Clarified WRA usage with Page
assets

Editorial updates

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 5

Executive Summary

The GST Site Foundation accomplishes the following:

1. Defines architectural and design standards for the foundation of a site
2. Standardizes processes for business users
3. Simplifies coding greatly, to the point where much can be provided in

common libraries
4. Clearly defines extension points

The patterns and guidelines embodied in this document, if strictly followed, will
enable architects to design basic sites more quickly, and will enable developers to
spend more time implementing project-specific requirements rather than standard
functionality.

At its core, the GST Site Foundation defines a simple URL-management and request
handling/request dispatching model that Content Server architects can easily
extend and build upon. The initial emphasis is on a non-rendering foundation that at
a high-level provides the following primary benefits:

 Is suitable for use “out of the box” for a large number of sites
 Introduces the notion of a web-referenceable asset, which is accessed via a

common controller
 Handles and dispatches requests quickly and efficiently
 Supports easily-constructed vanity URLs for any web-referenceable asset
 Standardizes usage of the Page asset for navigation
 Standardizes meta attributes
 Provides infrastructure for built-in 404 responses for assets as required
 Provides for managed alias assets that can represent any other URL
 Can be cleanly extended to address custom client requirements

Additionally, this foundation addresses problems that many sites face:
addressability of assets by editors, and acknowledgement that the URL is more
important than the content. By giving each asset its own URL at the discretion of the
editor, both problems are solved.

This model is appropriate for many different solution designs. However there may
be some site requirements which would make the patterns and conventions of this
approach less suitable. A checklist is included that helps an architect to determine if
this rendering model is the best approach for the project at hand.

6 GST SITE FOUNDATION V1.0.3

For More Information

For more information about the components described herein, for detailed technical
documentation, configuration information, source and binary downloads, please
visit the GST Site Foundation website at:

http://www.nl.fatwire.com/dta/contrib/gst-foundation/

http://www.nl.fatwire.com/dta/contrib/gst-foundation/

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 7

Glossary
This rendering model introduces some new terms and re-works the way we think
about some terms that are already in use. This is done to enhance understanding,
visualizing, and working with the components of the model.

These terms are to be adopted and utilized regularly in order to ensure that this
rendering model can be discussed clearly and efficiently. Furthermore, they are
required to be used as standard terms in design documents .

Term Definition
Alias An alias (“GSTAlias”) is an asset that acts as a proxy to another asset.
Controller A component of a model-view-controller architecture that performs

business logic.
c Variable referring to the current asset type being requested.
cid Variable referring to the id of the current asset type being requested.
GSF “GSF” is an abbreviation for GST Site Foundation.
GST “GST” is a prefix that is reserved for use by FatWire’s Global Solutions

Team. This can be used for asset types, sites, asset instances,
elements etc.,

NavLink A NavLink (“GSTNavLink”) is a subtype of a Page asset that contains
only a pointer to a web-referenceable asset.

Navbar Name A navbar name (“GSTNavName”) is a page subtype designating a page
asset as being a placeholder for a nav bar.

p Variable referring to the ID of the Page asset that the input asset
(c/cid) is associated with.

Page The name of an asset type that ships with Content Server that is used
in the site plan tree.

Site plan tree A tree structure represented within Content Server as a hierarchy of
“Page” assets. Pages are organized into this tree structure using the
SitePlanTree table and can be manipulated with siteplan tags.

Tagging To tag an asset is to associate the asset to a keyword. The keyword is
used to locate common assets quickly, for instance all the News assets.

URL Path A URL path is a part of a URL that does not include the protocol, host,
or port. It does not need to specify the entire path component of a
URL, and can therefore be appended to a URL ending with a path.

Virtual Webroot A virtual webroot is a URL prefix including protocol, host, port, and
possibly path elements. A URL path can be appended to a virtual
webroot to create a complete URL.

Web-Referenceable
Asset (a.k.a. WRA)

A web-referenceable asset is an asset that represents a web page, and
can be directly referenced by a URL, by representing c/cid either
explicitly or implicitly.

Wireframe A typed template, specifying 1… n web page components, like header,
breadcrumb, navigation, body, footer.

8 GST SITE FOUNDATION V1.0.3

Summary of Design Principles

Overview

There are several fundamental principles that underlie this rendering model:

 Simplicity
 Extensibility
 Separation of concerns
 Use of naming conventions
 Minimalism

Simplicity
This rendering model is designed for the 70-80% of sites that do not need
sophisticated, programmatically generated web content.

The model is designed to consider SEO from the ground up. Some SEO aspects will
be automatic (like prevention of unnecessary 404s, guessable links), while others
are forced (required attributes that provide keywords etc.)

Extensibility
This rendering model provides the foundation of what is required to build a site. It
allows the asset types that are involved to be extended by an architect as needed to
meet specific business and technical requirements.

There are several ways of achieving inner page rendering which vary from site-to-
site depending on specific requirements. Therefore, this foundation does not
address page composition other than to declare it the responsibility of the web-
referenceable asset. The architect chooses the best approach for page composition
for each site.

Separation of concerns
URL and navigation are independent concepts. In this model, the Page asset is
responsible for defining primary navigation only.

A Page subtype is used to classify page assets representing navigation hierarchies. A
second Page subtype is used to classify each element of the navigation structure
(nav bar).

URL-related information is removed from the Page asset entirely and is stored in
each individual web-referenceable asset.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 9

Use of naming conventions

Some new naming conventions are defined that allow these components to
cooperate freely.

The following table summarizes reserved words

Reserved Word Type Reserved Words
Page Subtypes GSTNavLink

GSTNavName
Attribute Names meta-title

meta-description
meta-keyword
h1-title
link-title
name (OOB field)
path (OOB field)
template (OOB field)
target_url
popup
linktext
linkimage
master_vwebroot
env_vwebroot
env_name

Named Associations target
parent_web_page

Table Names GSTUrlRegistry
GSTTagRegistry

Variable Names virtual-webroot
url-path

Asset Type Names The prefix GST is reserved for asset type names
System Property com.fatwire.gst namespace is reserved.
SiteEntry Names ErrorHandling/IndexPage

Using a reserved word is allowed as long as it is semantically consistent with the
usage defined in this document.

Minimalism
One of the core principles of this rendering model is to provide a foundation but not
attempt to over-specify; many aspects of technical design are left to the architect to
determine based on site requirements and timeline. For example, tools could be
built to simplify or customize the user experience, to perform routine functions, etc.

Of first priority are the principles of the model; secondarily, tools and code samples
will be developed to increase understanding and encourage reuse.

10 GST SITE FOUNDATION V1.0.3

Pre-requisites Checklist

The following checklist verifies that this Site Foundation is appropriate for a given
site. All items must be indicated “Yes.”

Yes Requirement

Do editors want to control the URLs?

Do editors intend to use the Advanced User Interface? (If no, see FAQ on
website)

Is the website largely not a form-based application?

Do you have access to Java developers?

Are you creating a new site in Content Server for this project?

Does your infrastructure support URL rewriting?

Are you planning on using Content Server for page rendering?

You are running Content Server 7.5.4 or later

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 11

Design Details

Controller use
The controller is the component of a model-view-controller architecture that
performs business logic. A controller must be utilized on sites conforming to this
model.

The controller must perform the following functions:

 Process bad requests properly (e.g.401s, 404, etc.)
 Resolve “c”, “cid”, from the incoming request
 Sets the “site” variable based on the input data
 Read the template associated with c/cid
 Call the template

The controller may perform the following functions:

 Security checks
 Form processing
 Other custom business logic

Notes on implementation

The underlying technology utilized by the controller can be specified by the
architect. For example, the FirstSite II Rendering Model implements its controller
using a CSElement-SiteEntry pair called Wrapper.

A compliant controller can be downloaded from the GST Site Foundation website.
Other implementations or extensions can be created as required.

12 GST SITE FOUNDATION V1.0.3

Site Plan Structure
In its current common usage, the Page asset can be slightly awkward. It either lacks
fields or has too many. In the past, architects have attempted to add fields to a Page
asset by associating rich content to the Page.

In that approach, the Page asset must serve three roles:

1. It is used to define navigational structure (it defines nav bars)
2. It is used to provide organizational input into URLs (it defines URL path

information)
3. It is used for page composition (it contains associations to content that is

rendered on a page)

Having one structure in Content Server serve three roles increases complexity and
limits how problems can be solved.

The GST Site Foundation addresses this problem by clearly delineating the
responsibilities, and designating them to specific components of the model. No
component is responsible for more than one job. Rather than treating a Page asset
as the core of a web page, the asset becomes extremely lightweight and is used only
to organize navigation structures (“nav bars”).

Creating Nav Bars & Breadcrumbs

The Site Plan Tree structure can be used effectively to create dropdown nav bars.
However, it’s rarely the case that a site’s navigation exactly mimics the URL
structure. To address this, the responsibility of specifying URLs is removed from the
Page asset, leaving creating Nav Bars & Breadcrumbs as the primary responsibility.

Naming Nav Bars

We define a new subtype of the Page asset “GSTNavName”, which is a placeholder
asset. It must be placed at the root of the SitePlanTree under the publication name.

The important field in the GSTNavName pages is the name. This field is used as a
handle so that templates can access a nav bar by name (although render:lookup or
another method could also be used). Additionally, content editors can open a
GSTNavName page to see the links in the nav bar that a site browser would see. This
will assist them in locating and placing content.

A site can contain multiple GSTNavName pages.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 13

Organizing Pages into Nav Bars

A new subtype of Page representing links in a nav bar is also defined. GSTNavLink-
subtyped pages are then placed under the Nav Name pages in the order in which
they are to appear in that nav bar. Multiple levels of hierarchy are supported in
order to allow for multi-level navigation.

It should be noted that on a rendered web page, the first tier and second tier of the
navigation don’t have to appear in the same block of HTML for them to both read
data from the same data structure (i.e. both HTML blocks read the hierarchy under
the same GSTNavName).

GSTNavLinks point directly to a web-referenceable asset using the unnamed
association.

Sometimes the same asset needs to be present in two locations on the nav bars.
While it is possible to associate a single web-referenceable asset to multiple Page
assets, this can be confusing to users and to visitors. Instead, secondary nav bar
placements should be done using GSTAlias assets.

Breadcrumbs

Breadcrumbs correspond to the clue at the top of a page that usually indicates how a
user clicked to access the specific point in the site that they are currently viewing.
Consequently, they are usually built using the GSTNavName-GSTNavAlias data
structure.

Not all pages can be easily associated with the navigation bar, however. For this
reason, several different ways of generating breadcrumbs are required.

Notes on implementation

An API and a tag are defined to assist with the construction of the breadcrumb.
Because the algorithm utilized to identify the pages that constitute the breadcrumb
may vary from site to site, the algorithm is pluggable.

See the appropriate appendix for information about the utilities and algorithms.

14 GST SITE FOUNDATION V1.0.3

URL Specification
URLs are specified in this rendering model using the concept of a “Virtual Webroot”
and a “URL Path”.

Each web-referenceable asset must specify its own complete URL (hence the term
“web-referenceable”). It is comprised of <virtual webroot><url path>. There is no
limit on the number of virtual webroots that can be deployed on a server or in a site,
but practical considerations may limit the number created.

The complete URL for the web-referenceable asset is stored in the path field. It is
stored as a single string. The <virtual webroot> part of the URL will vary from
deployment environment to deployment environment, so a URL assembler is
required to substitute the value of the <virtual webroot> in the URL to ensure that
the proper URL is served from the right environment. See the URL Assembler
section below for details.

Business users can browse the content on their site using URLs. A custom tree view
is provided to facilitate this. The interface is similar to Windows Explorer, and
provides access to commands using contextual menus.

The path field of web-referenceable assets should be presented in a way that is very
clear to end-users. A single textbox is probably not sufficiently usable. Rather,
plain text with DHTML widgets could help. Validation and auto-completion could
also be added to improve usability. Some examples of path field editors are
described in the appendix. The exact set of features is undefined, and the field editor
should be tailored to the business requirements.

Asset Event on Save to Populate GSTUrlRegistry Table

An asset event listener is registered for SAVE events. Upon save, any asset with a
path attribute (field) specified will have that field copied into the GSTUrlRegistry
table, along with the asset’s type, and ID.

The schema of the GSTUrlRegistry as defined as follows:

name Type Notes
path varchar(<maxvarcharsize>)

not null
note that longer URLs are
officially supported,
however since this
component exists for SEO-
optimized URLs, longer
URLs will be an
exceptionally rare
occurrence

opt_vwebroot varchar(255) Virtual webroot part of
path. Optimization.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 15

opt_url_path varchar(<maxvarcharsize>) Part of path excluding
virtual webroot.
Optimization.

opt_depth INT(10) The depth of this url,
calculated as the number
of slashes in the url.

assettype varchar(255)
not null

assetid long
not null

startdate Datestamp the asset’s start date
enddate Datestamp the asset’s end date

The table has a unique constraint on path + startdate + enddate.

The table has an index on path, another on assettype, another on assetid, another on
opt_vwebroot, and another on opt_url_path.

Asset Event on Delete to Update GSTUrlRegistry Table

A second asset event listener is registered for DELETE events. When an asset is
deleted, its path field is cleared, and the GSTUrlRegistry is updated accordingly (the
row is removed). This ensures that old URLs are made available to new assets.

Virtual Webroot substitution for different environments

Moving from one environment to another is problematic when URLs include
hostname and port. Therefore, a substitution method is required to ensure that the
virtual webroot can be substituted when rendering assets on different
environments. URL Assemblers address this cleanly. For more details, see
GSTVirtualWebroot Assets and URL Assembly below.

16 GST SITE FOUNDATION V1.0.3

URL Assembly

This rendering model requires a specific URL assembler to be used. The assembler,
WRAPathAssembler (i.e. Web Referenceable Asset Path Assembler, short name
“wrapath”), performs the following general functions:

 It identifies URLs that it can process by locating the request parameter
“assembler-name” with value set to “wrapath”. This assembler does not
decode URLs that do not include this parameter.

 It concatenates virtual-webroot and uri-path to form the complete URL.
 It suppresses the following parameters that must be in the Definition

according to Content Server, but which are not required in the URL:
o c
o cid
o pagename
o childpagename

 Configuration is trivial.

The use of mod-rewrite or equivalent technology is required in order to populate
the virtual-webroot property upon disassembly. See below for details.

Simplicity, usability and transparency are essential.

Mod-rewrite functionality and virtual webroots

Mod-rewrite functionality must be set up to support mapping URLs matching a local
virtual webroot to Content Server.

Whenever a specific virtual webroot is matched in a URL by the web server, the
request must be forwarded to ContentServer. In particular, the incoming URL must
be re-written as follows:

 the assembler-name request parameter is added and set to “wrapath”
 the path component of the URL is replaced with the value of

path.SatelliteServer property in ServletRequest.properties.
 the virtual webroot is appended to the URL as a parameter called virtual-

webroot
 the url path is appended to the URL as a parameter called url-path

Mod-rewrite rules (or equivalents) can be created to accomplish this. For
information about automated tools to help with this, see the appendix. Note that
automation of mod-rewrite rules is not required but is convenient.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 17

Controller integration

The WRAPathAssembler must work with a controller in order to support argument
decoding and in order to allow pagename to be suppressed from the URL.

Once the assembler has confirmed that the request can be serviced (by locating
assembler-name request parameter), the assembler sets “pagename” to the value of
the “com.fatwire.gst.foundation.url.wrapathassembler.dispatcher” property. If the
property is not specified, pagename is set to “GSF/Dispatcher”. A valid SiteEntry
must be found at one of these locations.

It should be noted that this design requires that the pagename set by the assembler
is globally utilized across the whole Content Server instance. Sites may share the
SiteEntry corresponding to the dispatcher in order to ensure that preview functions
properly. This will create extra SiteCatalog entries for each shared version of the
dispatcher that should be used for Preview only.

If site-specific or page-specific logic is required, this must be handled within the
controller, not the global dispatcher/wrapper.

Decoder Helper in Controller
The controller component must re-constitute c/cid from virtual-webroot/url-path.

Because this rendering model explicitly specifies everything that goes into a URL,
we can provide all of the required helper code out-of-the-box.

The controller may simply query the GSTUrlRegistry table for assettype and assetid
(within the appropriate start date-enddate range) given the result of concatenating
virtual-webroot and url-path. If a valid result is found, the controller sets c and cid
to the values retrieved from the GSTUrlRegistry table. Pagename is set to the
pagename of the Template asset set in the template field of the asset referred to by
the GSTUrlRegistry row.

Finally, the pagename should be dispatched to using ics.ReadPage()
render:calltemplate, or render:contentserver (NOT render:satellitepage), passing c,
cid, and any other parameters that were present on the URL (besides virtual-
webroot and url-path). This will invoke the template.

If no valid row is found in GSTUrlRegistry, a 404 response code should be streamed
to the client.

Helper APIs and tags support this functionality.

18 GST SITE FOUNDATION V1.0.3

render:get*url tag customization

In order that the links are generated properly and that the required information is
passed to the URL assembler, the parameters virtual-webroot and url-path need to
be calculated using the input c and cid for the web-referenceable asset. There is
currently no supported plugin support for this in the Render framework (though 2
places allow it in unsupported ways).

The traditional workaround to this is to add extensive code to Link templates to
look up these components (often with the use of a helper), then pass those
parameters directly into the tag as arguments. This is awkward, and it does not
support embedded links.

Recently, one of the previously unsupported ways of achieving this customization
has become a public API due to extensive use in the field. Consequently, this
framework adopts it as well.

When a link is generated using any of the render:get*url or related tags, a set of APIs
is invoked that allows the parameters of the link to be altered prior to the dispatch
of the URL generation to the URL Assembler module. This is precisely the hook that
we must extend.

In the futuretense_xcel.ini file is a property called xcelerate.pageref. This property is
set to a class that implements the com.openmarket.xcelerate.interfaces.IPageRef
interface. (Corresponding properties also control the implementation of IBlobRef in
the same package, but that is out of scope of this component).

A new implementation will extend the default implementation
(com.openmarket.xcelerate.publish.PageRef) and override the
setParameters(Map<String,String> args, ICS ics) method. It will alter the input args
map by adding the derived parameters

 virtual-webroot
 url-path
 pagename

to the map before calling super.setParameters(args, ics). This trivial customization
will allow proper links to be built by only specifying c and cid as input parameters.

The URL assembler will then take over and process these parameters, concatenating
virtual-webroot and url-path, and adding any additional parameters as query string
arguments (unless otherwise suppressed).

This approach enables the render:get*url tag family to always be able to generate
“pretty URLs” for any web-referenceable asset without having to do any additional
coding, customization of FCKEditor, or any other work.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 19

Support for multiple URL assemblers

This rendering model supports the usage of the WRAPathAssembler alongside other
URL Assemblers.

There are two key aspects that determine how well an assembler co-exists with
others:

- it can be called explicitly
- it can recognize and decode its URLs and ignore foreign URLs

The first topic is simple. Links can specify their assembler using a short form. By
specifying “wrapath”, this assembler will always be called.

The second topic is more involved. If this URL assembler is registered in an order
that allows it to handle requests for URLs that are not WRAPathAssembler URLs, it
can make this determination by examining the parameters set in it by the
mod_rewrite module. If the required parameters are absent, this assembler will
abort disassembly and give the next assembler an opportunity to decode the URL.

A Note about Multilingual Sites

The site plan and URL definition and assembly components of this rendering model
are language-agnostic. The language of an asset is not important until the web-
referenceable asset is rendered.

Two different URL paths are normally required for the “same article” rendered in
two different languages. In this case, each translation of the web-referenceable
content should specify their URLs in their path fields.

20 GST SITE FOUNDATION V1.0.3

GST Flex Family

A new flex family is required to support core infrastructure for this rendering model.
It should not be used as the main flex family for implementing sites. A site
should have its own flex family. This effectively reserves the GST flex family for
future definition and future conventions to be defined by FatWire’s Global Solutions
Team.

Flex family asset types

Role Name Description
Attribute GSTAttribute GST Attribute
Flex Child GSTAlias Alias
Flex Child GSTVirtualWebroot Virtual Webroot
Flex Definition GSTDefinition GST Definition
Flex Parent (future use) GSTParent GST Parent
Flex Parent Definition
(future use)

GSTPDefinition GST Parent Definition

Flex Filter (future use) GSTFilter GST Flex Filter

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 21

GSTVirtualWebroot Assets

It is necessary to define an asset type designating a virtual webroot configuration
asset to allow the URL assembler to specify the virtual webroot for a given
environment.

Because all URLs are prefixed with the webroot information, the URLs are fully
qualified. Fully qualified URLs are host-specific. Content Server sites must be able
to be rendered on different environments, such as staging, QA, delivery, and dev.
For this to occur, fully qualified URLs must be altered to make them refer to the
proper hostname.

GSTVirtualWebroot assets are configuration assets that enable this.

The asset includes three key attributes: master_vwebroot, env_vwebroot, and
env_name. The gst_master_vwebroot attribute corresponds to the virtual webroot
present in the URLs on the web-referenceable assets. In fact, the path field editor
can validate against instances of the GSTVirtualWebroot assets.

The env_name attribute specifies the name of the current Content Server
environment. The environment is configured as a system property.

The env_vwebroot attribute specifies the webroot value to use as a prefix on the
local environment.

Examples of env_vwebroot values include

 http://www.fatwire.com
 http://es.fatwire.com
 http://uk.fatwire.com
 http://www.fidelity.ca/en
 http://www.fidelity.ca/fr
 https://www.fatwire.com/my-flashy-new-microsite

Code will look up the system property name, and then look up the appropriate
virtual webroots. It can then substitute the master webroot with the local webroot
to produce an absolute URL to the current host.

22 GST SITE FOUNDATION V1.0.3

System Property Name
Property Name Purpose Default
com.fatwire.gst.foundation.env-
name

To define the current
environment name to
use

None. Absence disables the
functionality.

Definition
Attribute Name Attribute Description Purpose
master_vwebroot Master Virtual Webroot Holds the virtual webroot value

utilized in path elements of the web-
referenceable asset

env_vwebroot Environment-specific Virtual
Webroot

Holds the value to use for the virtual
webroot on the specified
environment

env_name Environment Name Name of the environment (e.g.
staging, production, dev-main, qa,
etc.)

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 23

GSTAlias Assets

A GSTAlias asset is a shortcut to another asset. It allows an asset to be referenced in
a place on the site other than its primary “home”.

Aliases should not be used as a primary means of creating internal links throughout
a site (the assets themselves can do that most of the time).

Aliases can override some values of the asset that they point to. For example, an
alias can have its own URL, even though it references content that may or may not
already have a URL defined for it.

Having multiple URLs for the same asset is possible; however it may not be
desirable when considered in the context of SEO. The architect is advised to
consider this if SEO is an important requirement.

If not assigned a URL, however, an alias acts like a proxy, or pointer asset, to any
other asset on the site. This is typically done to create “link”-like behavior.

Thus, an alias is defined with a flexible definition that allows the architect to tailor it
to the site’s needs. For example, a link-image attribute can be defined so that the
alias is rendered as an image link. A target_url attribute can be defined to point to
external sites. In this way, the alias asset can be used to represent an external link.

Ordinarily, when an alias asset renders its target, it will render it using the
information provided in the target. Namely, the alias will look up the target’s
wireframe template and render the target in that wireframe. However, this
behavior can be overridden by specifying an overriding wireframe template for the
alias.

The following attribute names are reserved but optional in the alias template. If a
use case matches the purpose, then architects are encouraged to utilize the reserved
attribute name:

Attribute Name Attribute Description Purpose
target_url Target URL Attribute of type String defining an

externally-linkable URL that the alias
refers to

popup Display Popup Attribute of type int (values of 0 or
1) indicating whether or not the alias
will be opened in a popup

template Template Out-of-the-box field (not attribute)
specifying the wireframe template to
be used to render the target asset.
Can be left blank to use the target’s
wireframe.

24 GST SITE FOUNDATION V1.0.3

linktext Link Text Attribute of type string designating
the text to be used to represent the
link

linkimage Link Image Image to be specified for the link
path Path The URL used to override the URL of

the target asset (if required).

The following named association is reserved but optional for Aliases.

Name Details Purpose
target Description: Target

Dependency Type: Exists
Asset type: Any
Multiple values: No

Attribute of type asset
corresponding to the target of the
alias.

This asset type will replace the commonly created “Link”, “CustomLink”,
“ExternalLink”, and similar asset types. In addition, it will replace the “Proxy”,
“Shortcut”, “Bookmark”, and “Symbolic Link” types often created for other reasons.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 25

Web-Referenceable Assets & Pages

Limitations of the Page asset prevent it from being used to directly represent the
raw content that comprises regular web pages. (Attributes are missing, multiple-
value support is not present, it cannot be assigned definitions, etc.).

For this reason, the Page asset is no longer to be used to define the main
content that appears on a web page. Instead, assets that represent web pages,
and which can in turn be directly referenced by a URL are defined as “Web-
Referenceable Assets”, and are responsible for this. Web-referenceable assets can
be either basic assets or flex assets.

These assets must have certain pre-defined basic asset fields or flex attributes in
order to be referenceable. They are:

Attribute Description
metatitle The <title> and meta name=”title” fields. String. Required.
metadescription Corresponds to the meta name=”description” field. String.

Required
metakeyword Corresponds to the meta name=”keyword” field. Comma-separated

string. Optional.
h1title Corresponds to the field on the page that will be rendered with a

h1 tag. Required.
linktext Optional field designating the text to be displayed when rendering

a link to the asset. When not specified, h1-title is used.
path URL Path for the asset. Not specifying it mean the asset is not web-

referenceable.
template Standard field designating the wireframe to use to render this

asset when it is being displayed by itself.

As noted above, the path attribute must be set for the asset to be considered web-
referenceable. Without it, a “pretty URL” is not generated for the asset.

It should also be noted that required fields must remain required for the provided
code to function properly. However, flex filters may be configured to automatically
populate some fields if desired.

Rendering the content of a Web-Referenceable Asset

Web-referenceable assets can be of any asset type or definition. Therefore, any
asset definition that needs to be rendered can have its attributes added alongside
the required attributes to populate the main content for the page.

Therefore, it is very easy to build a template that renders content of one of these
assets – the fields are all local. In fact, no special practices are defined. Architects

26 GST SITE FOUNDATION V1.0.3

are free to specify the definition of their web-referenceable asset as requirements
dictate.

It should be noted that a web-referenceable asset might point directly to other
assets for the purpose of composing contents of the page. (e.g. modules, lead images,
collections of articles).

Asset Tagging

Background

Most web-referenceable assets contain some sort of data structure to build an
explicit linking path to the assets that will be displayed on them. Because of this,
there is no need to do perform a query that could trigger an unknown dependency.

For example, if a web-referenceable asset represents “Editor’s Picks”, it likely has a
recommendation asset associated to it that in turn links to individual articles. The
individual articles end up being identified through explicit relationships, and there
is no need to perform an unconstrained query to identify them.

Portal-like web pages, however, operate differently. Content “chooses” where it is
to appear and it is up to the template for the portal page to ensure that the content
magically appears.

This often presents a problem for Content Server architects. The reason for this is
that for a portal-like page to look up all assets that point to it, an unknown
dependency is recorded in the portal page’s template to perform the reverse-lookup
to find the children, which can lead to scalability and performance issues

This section describes how a portal-like page can efficiently identify what content
has chosen it, without triggering an unknown dependency.

Solution

WIRING

In order to find and group assets together based on keywords, we propose a simple
tagging mechanism. An editor tags an asset with one or more values. This tag value
drives the placement of the asset on the site. For instance an editor tags the asset
with ‘news’ and this asset will show up in the ‘news’ section. By allowing for
multiple tags the asset can show up in multiple places on the web site. These places
are usually listing pages, listing all the assets for the news section, or all the assets
that have a tag in the form of another asset: asset-1234:MyAsset.

The implementation of the lookup is done in a single (global) transient lookup table.
The lookup table, similar to the GSTUrlRegistry table, is populated when an asset is

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 27

saved or published, can be queried at runtime and has a link to cache invalidation
code.

The keyword is provided by the editor in the GSTTag attribute, or field for basic
assets. This is a single-valued string attribute that is in the form of a comma-
separated list.

Note: this table could also be implemented as a Lucene index, however we
recommend a database table for maintenance convenience.

ACCESSING

To retrieve this content, what is needed is the lookup over the tag name. In fact, a
new JSP tag is defined called <gsf:tagged-list />. This JSP tag takes a tagname as
the input and returns a list of children. It is defined in detail below.

The JSP tag does NOT record any unknown dependency; however it does record a
dependency on the tagname and the children.

CACHE FLUSHING

To ensure that the addition of newly tagged content results in the content appearing
on the page, the lookup page must be flushed whenever a tagged asset with the
same tagname is added.

Content Server cannot determine this consistently on its own. However, a
publishing hook can help. Whenever publishing occurs, we can query all of the
newly published assets that are “tagged”. We can then add the tags to the list of
compositional dependencies that “have been published”, and trigger a flush of those
pagelets too. This has the effect of re-building the page only when it will render
different output, and it is much more efficient than an unknown dependency.

This functionality needs to be implemented carefully. For delivery environments, it
must only be implemented during the cache management phase of the publish
operation. However, for pages to accurately be updated on staging, dev, and QA
systems, the behavior described above must ALSO be triggered on the ASSET.SAVE
event for the child asset.

The implementation of each of these is defined below. (see RealTime CacheUpdater
Plugin and Asset Event on Save to Flush Parents)

<gsf:tagged-list/> Tag

This tag uses ICS.SQL(PreparedStmt, boolean) to query the GSTTagRegistry and
retrieve the assets that point to the specified tag.

28 GST SITE FOUNDATION V1.0.3

Input
 tagname – the name of the tag
 outlist – name of output list

Output

 The name of an IList object to be placed in the list pool. It contains two
columns: ASSETTYPE, ASSETID.

Null is never returned, but the returned list can be empty.
A java method is provided in order for the same logic to be called from java.

Asset Event Listener on Save to Populate GSTTagRegistry Table

An asset event listener is registered for SAVE events. Upon save, any asset with a
GSTTag attribute (field) specified will have that field copied into the GSTTagRegistry
table, along with the asset’s type, and ID. As the GSTTag field/attribute supports
multiple values, multiple rows can be inserted in the this table for one asset.

The schema of the GSTUrlRegistry as defined as follows:

Name Type Notes
Tag varchar(255)

not null
Name of the tag,

Assettype varchar(255)
not null

Assetid long
not null

Startdate Datestamp the asset’s start date
Enddate Datestamp the asset’s end date

RealTime CacheUpdater Plugin

RealTime publishing includes an API entitled RealTime CacheUpdater. We will
override the default com.fatwire.realtime.PageCacheUpdaterImpl to override the
beforeSelect() method. The flush and regen keys will be extended, to automatically
include all pagelets containing the GSTTag attribute value. This ensures that even
though parent has not changed, pagelets that reference it are automatically flushed.
This ensures that by simply tagging an asset, it automatically appears in pages that
render it.

The GSTTagRegistry table is read for the specific assets before the new values are
inserted. This is to make sure that pagelets are also flushed with the ‘old’ tag values
for the cases where the tag is deleted or the values have changed.
Implementation examples can be found in the guide “Customizing RealTime
Publishing Cache Management”.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 29

Asset Event Listener on Save to Tag Referenced Pagelets

When an asset is saved, this event checks to see if the GSTTag attribute is defined. If
it is, it looks up the old value in the GSTTagRegistry table for the current asset,
updates the GSTTagRegistry table for the current values and flushes the page cache
for all the old and new tag values, using the CacheManager API.

This is only done if an environment is not a delivery environment. On delivery the
asset listener should not be configured, only the publish event listener is. Both
listeners share, to some extent, the some algorithms. By configuring different
listeners in different environments we can fine tune the execution order.

30 GST SITE FOUNDATION V1.0.3

Index Pages

Index pages are not actual assets, and they are not content assets either. Index
pages are the web pages that appear when a visitor accesses an invalid URL that has
child URLs below it that are valid. Typically, this looks like a directory listing.

In a sense, index pages are “pretty 404s” that have been elevated above the status of
an error (and thus have a response code of 200).

If index pages are required, the following describes how they should be handled
according to this rendering model.

If a 404 should be returned:

When the controller determines that no match was found for a given URL, the
controller sets an error code header corresponding to the 404.

A servlet filter then reads the header and returns a 404 status code.

The servlet container is then responsible for calling the appropriate error handler
page as defined in the web.xml file for the servlet. It should be noted that Content
Server can be used to handle 404 requests by specifying a Content Server page in
the 404 error handle block in web.xml.

If a 200 should be returned:

If the controller determines that a 200 status code should be streamed, then it
should dispatch the request to a CSElement/SiteEntry pair called
ErrorHandling/IndexPage that renders the index page content. Its input is the
virtual-webroot and url-path variables processed by the controller.

Consult the appendix for a detailed algorithm and tools to assist with the automatic
generation of index pages.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 31

Landing Pages

Landing Pages are typically pages that act as entry points into the website. They
may be advertized on television or in a newspaper (by URL of course), or they may
be sent out as links in email. They may also simply be the primary links off a nav bar.

In any event, landing pages are almost always are designed to be attractive, the
content on these pages is often managed, in addition to providing links to other
assets.

Note:

 There is fundamentally no difference between a landing page and any other
web-referenceable asset in this rendering model.

 A Landing Page is not an Index Page, nor is it related to an index page.
 A proxy or alias asset might act as a landing page for the target content.

Note that landing pages often render content from various sources, which is not the
case for all web-referenceable assets. This has no impact on the model, however.

32 GST SITE FOUNDATION V1.0.3

Wireframes

Wireframes can be either typed or typeless templates. (For developers familiar with
the FirstSiteII model, they combine the role of Layout and Detail.). Therefore, the
entire markup that drives a page is defined in the wireframe template.

The primary benefit of this decision is for editors: it allows them to both assign and
preview the exact template choice that will ultimately represent the logic that
renders the webpage.

While it is true that calls to some common components like TopNav, Footer, etc. will
be duplicated in each wireframe; the specification of these components has become
so simple that the duplication is more than justified by the design simplicity. This
benefits developers by reducing the complexity (and therefore the maintenance
cost) of the code base. In practice, this leads to greater developer productivity.

For example, skinning sites with most of the wireframe specified in a single
template is very simple.

The wireframe may of course call out to nested site entries or templates to render
common components, as well as other related components.

It should be noted that wireframes are compatible with modular-based designation
of common page elements.

© 2010 FatWire Software, All Rights Reserved

GST SITE FOUNDATION V1.0.3 33

Future Direction

The following section describes some ideas for the future of this site foundation.
They do not define a specification, but are rather to indicate where we see the site
foundation going in the future.

Page Asset UI Customization

It may be desirable to create custom forms for the Page asset’s UI so that each
subtype of Page asset can have its own custom form that only renders the required
fields.

Since Pages are basic assets, and have their own ContentForm and ContentDetails
forms, this customization should be simple.

The benefit of this customization is to emphasize that the page asset is to remain
extremely lightweight as opposed to becoming something bloated with lots of extra
content in it.

Tools

Any tools that will be created must be simple, compatible, and robust. Tools created
for this rendering model should ship with a version number and the specification
should correspond to that version number. Tools are provided on an “as-is” basis
and may not be updated on a regular basis.

Postupdate action on asset delete to create an alias

When a web-referenceable asset is deleted, it could be very convenient to convert it
to an alias in some cases.

Make use of IBlobRef for a pretty BlobServer URL

Pretty BlobServer URLs can easily be generated using the IBlobRef interface in the
same way that the IPageRef interface is being leveraged.

34 GST SITE FOUNDATION V1.0.3

301 support for GSTAlias assets

It is conceivable that GSTAlias assets will be required to represent “permanent
redirects” or 301 status codes. This may require a new field and some intelligent
logic to support it.

AddLink customization preventing linking to non-WRAssets

A customization to the addLink UIs to prevent people from linking to assets that
don’t have path attributes set would help prevent broken or ugly links.

The rendering model specifies the requirement. A tool like this improves the user
experience in attempting to achieve what is set out by the business requirements.

	Document Revision History
	Executive Summary
	For More Information
	Glossary
	Summary of Design Principles
	Overview
	Simplicity
	Extensibility
	Separation of concerns
	Use of naming conventions
	Minimalism

	Pre-requisites Checklist
	Design Details
	Controller use
	Notes on implementation

	Site Plan Structure
	Creating Nav Bars & Breadcrumbs

	URL Specification
	Asset Event on Save to Populate GSTUrlRegistry Table
	Asset Event on Delete to Update GSTUrlRegistry Table
	Virtual Webroot substitution for different environments

	URL Assembly
	Mod-rewrite functionality and virtual webroots
	Controller integration
	Decoder Helper in Controller
	render:get*url tag customization
	Support for multiple URL assemblers

	GST Flex Family
	Flex family asset types

	GSTVirtualWebroot Assets
	GSTAlias Assets
	Web-Referenceable Assets & Pages
	Rendering the content of a Web-Referenceable Asset
	Asset Tagging
	<gsf:tagged-list/> Tag
	Asset Event Listener on Save to Populate GSTTagRegistry Table
	RealTime CacheUpdater Plugin
	Asset Event Listener on Save to Tag Referenced Pagelets

	Index Pages
	If a 404 should be returned:
	If a 200 should be returned:

	Landing Pages
	Wireframes

	Future Direction
	Page Asset UI Customization
	Tools
	Postupdate action on asset delete to create an alias
	Make use of IBlobRef for a pretty BlobServer URL
	301 support for GSTAlias assets
	AddLink customization preventing linking to non-WRAssets

